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Al~traet--We analyze a plane shock wave propagating into a homogeneous two-phase mixture in which 
the gas density is small compared with the liquid density. Inertial effects are assumed to govern the 
mechanics and "added mass" effects are represented by the methods of Genrst and WaUis. Expressions 
are obtained for the shock speed, as well as void fraction, pressure and density jumps across 
small-amplitude shocks. A method is presented for predicting the behavior of large-amplitude shocks; their 
characteristics and conditions for their existence are discussed. 
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F O R M U L A T I O N  O F  T H E  P R O B L E M S :  S H O C K  C O N D I T I O N S  

We consider an inertially-coupled two-phase dispersion, assuming that the continuous phase 
is incompressible and taking into account the compressibility of the dispersed phase. We also 
assume that the density of the dispersed phase is much lower than the density of the continuous 
phase, i.e. 

,02 <~ Pl,  [1] 

so that the model considered below corresponds to the dispersion of gas bubbles in an 
incompressible fluid. 

Our purpose is to analyze the propagation of a concentration (voidage) jump associated with 
a jump in density of the dispersed phase [it has been stressed by Sergeev & Wallis (1991) that 
concentration shock waves propagating relative to the dispersed phase in an inertially-coupled 
dispersion are possible only in the case when at least one of the phases is compressible]. 

The model below can be used to describe shock waves in bubbly liquids. Observations of such 
shock waves have been reported in a number of publications since the work of Campbell & Pitcher 
(1958); very good observations and experimental data can be found, for example, in Noordzij 
(1973) and Noordzij & van Wijngaarden (1974). Nevertheless, no theoretical considerations based 
on the model of inertially-coupled dispersions have been provided for shock waves, although an 
inertial interphase interaction prevails in many practical cases. 

We consider the case when there is no relative motion in the two-phase media ahead of the shock 
so that w°= v ° - v  ° = 0 (here v~ and v2 are, respectively, the velocities of the continuous and 
dispersed phase, w is the relative velocity and the superscript "0" herein denotes the hydrodynamic 
parameters in front of the shock). Choosing the appropriate coordinate system, we can assume that 
the two-phase medium is motionless in front of the shock. 

The shock conditions for the (reversible) concentration/density discontinuity in the case of a 
barotropically compressible dispersed phase have been derived by Sergeev & Wallis (1991), on the 
basis of the dosed system of macroscopic equations for the potential flow of a two-phase dispersion 
obtained by G-eurst (1985a, b, 1986) and Wallis (1989a, b, 1990). 

These equations correspond to conservation of mass, momentum and energy, it being implied 
that compression is sufficiently rapid that kinetic energy due to relative motion (i.e. representing 
added mass effects) is directly convertible and is not immediately dissipated. Relative motion also 
contributes to the net stress tensor in the momentum balance. This is reasonable since mutual 

tOn leave from the Institute for Problems in Mechanics, Moscow, Russia. 
:[:To whom all correspondence should be addressed. 

691 



692 Y.A. SERGEEV and G. B. WALLIS 

inertial forces dominate drag forces during rapid transients. There might then be expected to be 
a "relaxation" region behind the immediate shock, in which the phases tend to come to equilibrium, 
eventually achieving equal velocities if there are no further causes of relative motion. 

With the above assumptions in the coordinate system connected with the shock, the closed set 
of the one-dimensional shock conditions can be written as follows (absence of the superscript 
indicates values behind the shock): 

el vt = - e °D ,  [2] 
0 0 

P2e2V2 = - p 2 e 2 D ,  [3] 

el v~ + H(e2)w 2 + l p ( p 2  ) = e°D 2 + l p ( p  °) [41 
Pl Pl 

and 

1 2 1 2 1 1 2 1 0 
+ E(e2)vl w + ~ F(e2)w + --P(P2) = ~ D + --P(P2).  V l [5] 

Pl Pl 

Here p is the pressure in the dispersed phase; it is assumed to depend only on the density of the 
dispersed phase so we consider barotropic behavior of the gas bubbles, el and e2 are the volumetric 
concentrations of the continuous and dispersed phases, respectively, so that 

~l + e2 = 1. [6] 

The propagation speed of the shock D relative to the motionless undisturbed two-phase media is 
to obtained as part of the solution of the problem. 

For the considered inertially-coupled dispersion the interphase interaction is described by the 
terms involving the exertia E(e2) defined by Wallis (1989a); the functions H and F introduced in 
Sergeev & Wallis (1991) are represented through the exertia as follows: 

dE 1 2 d E  E, F = e l  E. [7] H = 5el de-----~ + el 

One of the basic assumptions used by Wallis (1989b) to develop the general equations of 
inertially-coupled dispersions is that the mean potential gradient associated with an average flux 
of the continuous phase relative to a matrix of particles is fl times what it would be without the 
particles. The exertia which appears in the basic equations is then 

E = [3et- 1. 

was derived as an approximate function of the void fraction by Maxwell (1881), who considered 
the analogous problem of electrical conduction past a matrix of non-conducting spheres. The value 
of fl found by Maxwell leads to E in the form 

E =--a2 [8] 
2" 

Relationship [8] has been confirmed by Turner (1976) from electrical conductivity measurements 
in a fluidized bed. 

Now, functions [7] reduce to 

H =~(1  --e~) [9] 

and 

F = 1 (1 - 2e2). [10] 

Following the approach usually accepted in gas dynamics (e.g. Courant & Friedrichs 1948), it 
is most convenient to introduce new variables: 

, = - =  0 = p o .  [111 
el P2 
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(in front of the shock, • = ~0 = l/g0 and 0 = 0 ° = 1). The ranges of the variables ~ and 0 are 

1 ~<z ~< +oo, 0 < 0  < +oo. [12] 

Taking into account the continuity conditions [2] and [3], the velocities of the phases and the 
relative velocity can now be written as 

3°--1 
vl = M3,  v2 = M ~ O - -  [13] 

¢ - 1  

and 

Z ° -  1~ 
w = m 3 ( 1  - 0 ~ _ 1 ] ,  

where we have introduced the parameter 

M = el vl = - e ° D  = const. 

Normalizing the velocities by the value M and the gas pressure as 

H =  P 
Pl M2' 

the system of shock conditions [2]-[5] reduces to 

z + H w 2 + l - I = z ° + l - I  ° 

and 

wherein 

and 

For Maxwell's exertia, 

lz2 1 2 1 o 2 
+ E z w + ~ F w  + I I = ~ ( z )  + I I  °, 

[14] 

[15] 

[16] 

[17] 

[ 1 8 ]  

z - 1  2 z -  1 2 - z  
E =  2--~' H =  432 , F =  2z [22] 

The system of shock conditions [17] and [18] is sufficient to find any two of the following three 
values---a concentration (voidage)jump, a gas density jump and a shock propagation speed--when 
any third value of them is known, assuming that all hydrodynamic parameters in front of the shock 
are given. The velocities of the phases behind the shock can then be calculated in accordance with 
[13] and [14]. A jump of the gas pressure can be determined from the corresponding equation of 
state. When the hydrodynamic parameters on both sides of the shock are known, the fluid pressure 
Pl both ahead and beyond the shock can be calculated from the relationship for the interphase 
pressure difference (Wallis 1989b, 1991): 

1 w2 dE 
Pl - P = 2 p '* '  -~e2" [23] 

Eliminating the gas pressure from shock conditions [17] and [18], we obtain an equation for the 
relative velocity w in terms o f ,  (or the concentration of the dispersed phase ~2) as follows: 

( 1 ) 2  
H - ~ F  w - E~w + 3 - 3 ° - ~ [C - (30)21 = O. [241 

E ----- E(T) = E(82(z)), 82('~ ) -- (z -- l)/z, [20] 

1 dE E dE 
H(*) = 2 d-~-z + - ' z  F (3)=  3 - ~ z -  E. [21] 

0 z ° -  1"~ w = 3 1 - [ 1 9 ]  
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As the relative velocity w is given by [19] as a function of v and 0, [24] actually determines a 
relationship between the voidage and the gas density behind the shock. As soon as this relationsip 
is obtained, any one of the two shock conditions [17] or [18] gives an analog of the Hugoniot 
relationship connecting the jump of the gas density with the pressure jump and the shock 
propagation speed. 

P R O P A G A T I O N  OF A FINITE S M A L L - A M P L I T U D E  SHOCK 

Now we assume the shock to have a small but finite amplitude, so that the value of 0 
corresponding to the gas density beyond the shock can be represented in the form 

0 = l + 0 1 ,  01~1.  [25] 

Ahead of the shock 0 = 0 ° = 1. The jump of z across the shock is now expanded in terms of 0, 
as follows: 

[~1 = z - ~0 = 71 (~°)  0' + 72(e°)  02,  [26] 

where terms of third and higher orders in 01 are henceforth omitted. 
We note that 71(e °) corresponds to the linear analysis given in Sergeev & Wallis (1991), where 

the relationship between the voidage and density jump across the weak shock was obtained. From 
the results of the cited work, it immediately follows that 

E 0 

71 = ~0 (e0)z + E o" [27] 

Now the functions E, H and F in [24] can be expanded in terms of small [z], using [22], and the 
values of w and w 2 behind the shock can be obtained from [19] as follows: 

_ _  l o (~0)2[.~ ])([.t ] __ /~! 01 ~ .31_ O (0 ~ ) [28a] w = 

and ( )2 
1 e001 + O(0~), [28b1 w2 = 

where z is given by [26]. 
The second-order approximation of [24] follows from the expansions of E, H and F and [28a, b] 

in the form 

E ° f 1 ~ / 1 3r(~°)X''2 2r( °)Olt, [29] 

where 

and 

1 3(4~2-3) E 3gldE 
F = [30a] 

2 48~ 2e2 de2' 

2el dE A - 8gz - 7 E + - - - -  [30b] 
2~22 ~2 d~2 

5 - 4e2 al dE 
f~ = E [30c] 

4~  292 d~2" 

The second-order expansion in 01 of the solution of [29] leads to the representation of [z] in the 
form [26], where 72(e °) is found to be of the form 

(~0)2fF 1 3 r  ° 1 2  2r°  r °  "1 
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Taking into account [26], [28b] and [3 I] together with the expression of the function H(z) in terms 
of [z] we obtain from shock condition [17] the analog of the Hugoniot relationship for the finite 
small-amplitude shock as follows: 

{ [ (8°) ' (1+8°)11 - _ _  
01 ~1"4-01 ~2"~ 8 ~ ' ~ " ~ [ ~ " t - " - - I ' I 0 ~ - - ' 0 .  [32] 

Expanding the gas pressure in terms of a small density jump up to terms of second order, 

n _ n 0  = 1 [-2102]. (d2p) [P2] 2] [33] 

where 

[P2] = P2 - pO = _pOO, ' [34] 

and taking into account [15] and the relationship between the small voidage and gas concentration 
jumps (Sergeev & WaUis 1991), 

0 (820)2 "~ E0 
[P2] ---- --P2 o0--6:5~n~ [821 + O(012) [35] 

o io2a-~ 

where 

[82] = 82 - 8 °, [361 

the propagation speed of the finite small-amplitude shock wave in the we obtain from [32] 
form 

pO Eo _}_ (8o)2/d2p~ -] 
D2 ="--Do2 [ 1 -  ¢(8°)[82] d ~  2 ~1~2  ~ T p  22)p2. O0 ["2]J, [37] 

where the terms of second and higher orders in [01] are neglected (01 ~ 1 and [e2] ~ 1 for the 
small-amplitude shock). In [37], Co is the sound speed in the gas and Do is the propagation speed 

in an inertially-coupled two-phase of an infinitely small concentration/density disturbance 
dispersion, determined by Sergeev & Wallis (1991) as 

~o tso~ + E o 
Do2 = c2F2x. 2J 0~- T6-_5-~-'6 • Pl r~ 1~2"E' 

The function 0(82) in [37] is found to be of the form 

[38] 

[39] 

where Y2 is defined in [31] and His  determined by [9]. In the case of Maxwell's (1881) exertia, taking 
into account [8], [9] and [30], [39] reduces to 

¢ =  582 
81 (1 + 282)" [40] 

For the case of Maxwell's exertia, the function 0(82) is represented in figure 1. 
We note that, for small 82, [40] shows the asymptotic behavior of ¢ as follows: 

0=582  at 82--.0. [41] 

Surprisingly, [41] gives almost exactly the values of ¢ given by [40] within the interval 0 ~< 82 ~< 0.5, 
with a maximum relative error of < 10% (it can hardly be expected that for a clean dispersion 
of bubbles in a fluid the voidage exceeds the value 0.5). At 82 = 0 and 82 = 0.5, [41] gives the exact 
values ¢ = 0 and ¢ --2.5, respectively. 

An asymptotic behavior of ¢ at 82 --' 1 (81 --, 0), although such values of 82 seem unrealistic, is 
as follows: 

5 
O = ~  as 82~1, 82--,01 [42] 
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F igure  1. The funct ion  (~(E2) for Maxwe l l ' s  exert ia.  

Although it is more difficult to measure experimentally a gas density jump across the shock than 
a voidage jump, in some cases it can be useful to have a representation of  the shock speed in terms 
of the jump of the gas density. From [37] and [35], we have 

{ _tp ]r 0 .  1 
0 2 =020 - 1 --r-~2L(eo)+Eoetez)+~lc~l-~p22 _ j j .  [43] 

We note that the compression shock of the gas density propagates with a speed higher 
than the "speed of sound" in the two-phase media Do [the property (d2p/dp~)°>O is, of  
course, assumed], while the rarefaction shock of the gas density propagates with a speed 
lower compared to Do. It should be stressed that for a small-amplitude shock, a compression 
jump of the gas density is necessarily associated with a "rarefaction" jump of  the concentration 
of  the dispersed phase (and vice versa--a rarefaction jump of the gas density, if such a jump 
can be realized, should be associated with a "compression" jump of the concentration ~2), as 
follows from [35]. The validity of  the last statement for large-amplitude shocks is shown in the 
next section. 

L A R G E - A M P L I T U D E  SHOCKS 

We start from the normalized system of  shock conditions [17] and [18]. Here we shall consider 
the finite-amplitude shock only for the case of  Maxwell's exertia, so that E = 82/2 and the functions 
H and F are of  the form [9] and [10], respectively, or [22] in the case when the "gas-dynamics" 
variable ~ = 1/e2 is used. 

For  Maxwell's exertia, [24] for the relative velocity of the phases is of the form 

- C 2 - - 1  
~ w  2 -- (z -- 1)w + (z ° -- z)[(,  ° -- 1) + (z -- 1)] = 0. [44] 

4-C 2 
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Since I ~< z ~< + oo, the condition for the solvability of this equation is of the form 

A('G "~0) --" 21:3 -- 2z2 -- [(.~0)2 -- 2z0 + 2]z -- (z°) 2 + 2z ° I> 0. [45] 

It can be shown that the equation 

A (z, z°) = 0 [46] 

has the only root in the interval 1 ~< z ~< + oo, so that condition [45] can be rewritten as 

z/> z_ (8 °) [47] 

o r  

e2 >/8_ (8 °) = 1/(1 - z_ ), [48] 

where the functions z_ (s2 °) and 8_ (8 °) are represented in figure 2. 
The necessary condition for the realization of  the shock [48] gives a lower limit to the 

concentration of  the dispersed phase behind the front, which depends on the concentration ahead 
of  the wave. Since 8_ < 82O, [48] means that an inertial interphase interaction restricts an amplitude 
of  the rarefaction shock of  the concentration 82, such that 

l[82]l = 8 o - 82 ~< 80 - 8_ (t°). [49] 

Wave propagation in the form of  a shock cannot be realized for concentrations e2 < 8_ (e0) behind 
the wave front. 

The solution of  [44], taking into account [19] for the relative velocity of  the phases, gives two 
roots for 0 as a function of  t ;  one of  them is negative for all values of  z I> 1 and, consequently, 
can be withdrawn from consideration, so that the dependence of  the gas density in bubbles on the 
concentration of  the dispersed phase behind the shock is given by the relationship 

1 
0 = ( z 0  1)(z + l) [2x/(z -- 1)A(L z ° ) -  (z - 1)2], [50] 

where the function A (z, z °) is given by [45]. The function 0 (z) at 8 o = 0. l, 0.25 and 0.4 is represented 
in figure 3. 

An analog of  the Hugoniot curve can now be obtained from [17], in which z = z(O, 8 °) is the 
inverse function to [50]. We represent shock condition [17] in the form of  the Hugoniot relationship 
as follows: 

h(O) = II ° - II(0), [51] 

0.75 

e -  0.5 

0.25 

4 

2 

0.25 0.5 0.75 

d 
Figure  2. The  func t ions  z_ ( ~ )  and  ~ ( ~ ) .  
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F igure  3, 0 = p°/p 2 as a funct ion o f  ~ = I/(1 - ~2); the • 
po in t s  cor respond  to the m i n i m u m  values  o f  z = z (~0). 
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where, taking into account [19] and the form of H(z) in [22], the function h(O) is of the form 

h(O)=~(O)_~(~o)q 21 : (0 ) -1 [1  0~(~° ) -~ ]2 .  
4 -- r t tO  [52] 

Since the function 0(r) is monotonic within the interval ~ (e0)~< T ~< + oe, the functions z(0) 
and h(O) are defined within the interval 0_ (e0) ~< 0 < + oe. Here 0_ corresponds to the value ~._ 
(or e_ ). As A (~_, % ) =  0, from [50] it follows that 

0 _  = ( ~ -  - 1)2 
(r ° -  1)(~_ + 1)' [531 

where z_ (e0) is given in figure 2. 
From [53] it follows that 0_ < 0 for all values of e0. Since 0 = p°/p 2 > 0, the functions T(0) and 

h(O) can be considered as defined within the interval 

0 < 0 <  +oe.  [54] 

The function h(O) is represented in figure 4 for e0 = 0.1, 0.25 and 0.4. Below we name the curves 
h = h(O) and h = II ° -  17(0) as the h-curve and R-curve, respectively. The h- and R-curves 
intersect at the point 0 = 1, h = 0, which corresponds to the undisturbed two-phase flow ahead of 
the wave front. For any type of gas behavior inside bubbles the R-curve increases with 0 and has 
the form quantitatively represented in figure 5(a-c) by the dashed lines with the horizontal 
asymptote h = II °. 

An important result follows from the fact that the function 0(T) increases with ~. Since 
= 1/(1 - e z )  increases with ez, the rarefaction shock of the concentration of the dispersed phase 

is necessarily associated with the compression shock of the gas density inside bubbles (P2 > p0 as 
~2 < e0) and the compression concentration shock is associated with the rarefaction density shock 
(P2 < p0 as e2 > e0). For small-amplitude shocks this result has been obtained by Sergeev & Wallis 
(1991) and was mentioned above (see [35]). 

0.2 

0.1 

h o 

-0.1 

-0.21 

Figure 4. The function h(O). 
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Figure 5. The sketch of mutual intersections of the h-curve ( ) with the H-curve (---): (a) linear 
disturbance, the curves are tangential; (b) compression shock of the gas density in bubbles associated with 
the rarefaction shock of the concentration of the dispersed phase; (c) rarefaction shock of the gas density 

associated with the compression shock of the concentration. 

Obviously, there are three possibilities for the mutual intersection of  the h- and H-curves shown 
in figure 5(a-c): 

1. The curves are tangential at 0 = 1, h = 0, so that dh/dO = d(II  ° - H)/d0 at 0 = I. 
Using the properties of  the functions h = H ° -  H(0) and h = h(O), it can be 
proved that there are no other points of  intersection. This case corresponds to the 
propagat ion of  small (linear) concentration/density disturbances near the steady 
state 0 = 1 (P2 = pO), e2 = e ° when the propagation speed D = Do is given by [38]. 

2. Besides the point 0 = 1, h = 0, the h-curve intersects the "negative" part  of  the 
H-curve at h < 0, 0 < 1 (an absence of  other intersections can be proved for this 
case as well), so that 

dh d(H ° - H) 
> at 0 = 1. [55] 

dO d0 

The case under consideration corresponds to the compression jump of  the gas 
density inside bubbles across the wave front and to the associated rarefaction 
concentration jump. 

We now consider the behavior of  the h-curve in the interval 0 < 0 < 1, which 
corresponds to the compression jump of  the gas density. Besides the point 0 = 1, 
h = 0, the h-curve intersects the P-axis at 0 = 0 .  < 1, where 0 .  and the corre- 
sponding value of  the concentration e2* can be obtained from the system of  the 
algebraic equation [52] at h = 0  and [50]. The function O,(e °) is represented 
in figure 6. Since I I  ° -  I I  < 0 for the compression shock of  the gas density [see 
figure 5(b)], O, (e °) gives the lower limit to the value 0 = p°/p 2 behind the shock. 
It  means that the gas density in the dispersed phase behind the wave front is 
restricted, such that 

P2 ~ pOp ~t i (~o). [56]  



700 Y.A. SERGEEV and G. B. WALLIS 

Inequality [56] gives the maximum compression of the gas across the shock 
p2/p ° as 0g ~ , which is a function of e0. Since 0 ,  increases with e0, the maximum 
compression decreases with the concentration of the dispersed phase in the 
undisturbed dispersion. As e°--,1, 0 ,~0.217,  hence the lowest maximum 
compression [(p2/pO),]min=4.61 corresponds to high concentrations of the 
dispersed phase. 

Inequality [56] shows that the strength of the gas density jump is limited as 
follows: 

( ' )  [/92 ] ~ [/92], = p0 0 " ( ~ ° )  1 . [57] 

The maximum value of the strength of the density compression jump [P2]* as a 
function of e0 is represented in figure 7. 

As shown above, the concentration jump of the gas density is associated with 
the rarefaction jump of the concentration of the dispersed phase. The direct 
numerical solution of system [52] at h -- 0 and [50] shows that the concentration 
e2* corresponding to the value 0,  is such that e:, > e2-, so that e2, (in figure 8) 
gives the lower limit to the concentration behind the wave front (the relationship 
between the gas density and the concentration beyond the shock is given by [50] 
in which z = 1/(1 -e2)  and 0 = p°/p2). 

We can now conclude that the obtained restrictions of the shock strength 
are only due to hydrodynamic effects, so that the shocks with e2 < e2* and 
0 < 0 ,  (p2 > P 200 g I ) are "inertially" forbidden. The detailed analysis of the 
thermodynamic processes in gas bubbles can add some other restrictions as 
well. 

The propagation speed of the shock D can now be found from [51] in 
dependence on the given value of the gas density P2 or the concentration ~2 behind 
the front (or through the values of the jumps [P2] or [~2] of these parameters across 
the shock). The propagation speed D is determined by the value of the parameter 
M, [15], in the expression for the function I'I, [16]. Taking into account that for 

0.2 

0.1 

I f I 
0.25 0.5 0.75 

Figure 6. The function 0 , ( t ° ) .  

7 

[P2]./P ° 

5 

3 I I I 
0 0.25 0,5 0.75 

0 
E 2 

Figure 7. The maximum value of  the strength of  the density 
compression jump as a function of  E~. 
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Figure 8. The lower limit of the concentration of the dispersed phase behind the shock vs the concentration 
ahead of the wave (in steady state). 

the undisturbed dispersions M = Mo = - e ° D o ,  where Do is the speed of "sound", 
[38], the h- and H-curves are tangential, so that dh/dO = d(H ° - II)/d0 at 0 = 1; 
we immediately find from [51], [56], [16] and [15] that in the case of the 
compression jump of the gas density in the dispersed phase 

D > Do. [58] 

This result means that the concentration/density shock wave associated with the 
compression jump of the gas density inside bubbles across the wave front 
propagates with a higher speed than the speed of "sound" in the two-phase 
dispersion. 

3. The second point of the intersection belongs to the "positive" part of the H-curve 
a t h > 0 , 0 > l .  Here 

dh d(H ° - H) 
< at 0 = 1. [59] 

dO dO 

This situation corresponds to a rarefaction jump of the gas density inside 
bubbles across the shock. From [58], [16] and [15] it follows that a rarefaction 
shock of the gas density associated with the compression of the concentration 
of the dispersed phase propagates with a speed lower than the speed of "sound", 
so that 

where Do is given by [38]. 

D < Do, [60] 

An existence of the rarefaction shock of the gas density in bubbles is, of course, questionable. 
Nevertheless, because we are not going to discuss the thermodynamic aspects of the behavior of 
the two-phase dispersion in this paper [such a consideration should necessarily include a detailed 
model of the interphase heat transfer, see Nigmatulin (1978)], the discussion on the important 
problem of a possibility of a realization of the rarefaction jump of the gas density inside bubbles 
is left for further development of the model under consideration. 

It should be underlined here that, while the strength of a compression shock of the gas density 
is limited by the value [P2]* given by [57], the strength of a rarefaction shock of the gas density 
is unlimited within the frame of the hydrodynamic theory under consideration. Certain limitations 
to rarefaction shocks of the gas density inside bubbles should appear with a detailed accounting 
of thermodynamic and heat transfer properties of the dispersion. 
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In conclusion, we find a relationship between the strength and the propagation speed of the 
shock. From [51], taking into account [16] and [15], we have 

3 2 = pO _ p  
Pt (e 0)2h (0) . [61] 

Taking into account that the propagation speed V of the shock wave with the same density jump 
in a pure gas can be written as (Courant & Friedrichs 1948) 

(pl p _p0 y!2 
V =  ~ p l - - p 0 ]  , [62] 

we represent the propagation speed of the shock in the two-phase dispersion in the form 
(pO~,/l 

D = \~-~/ V/5, [631 

where 

/5  Z [ 0 - - 1 1  '/2 

= I h(o) J " [64] 

Such a form of representation is very convenient for further analysis, because/5 does not depend 
on the type of thermodynamic process inside bubbles or on interphase heat transfer. 

The normalized speed of the shock/5  as a function of 0 = p°/p 2 is given in figure 9 for the 
concentration of the dispersed phase ahead of the wave front 80 = 0.1, 0.25 and 0.4. Figure 10 
illustrates the behavior o f / 5  as a function of 8l for the same values of 8 °. The • points in both 
figures correspond to the propagation velocity of linear (small-amplitude) waves in the two-phase 
dispersion at 0 = 1, 8l = 8 °. Direct comparison shows that the values o f / 5  for the parameters 
corresponding to the • points in figures 9 and 10 coincide with ~--~Tp°Doco, where D O 
is the propagation speed of infinitely small concentration/density disturbances calculated from 
[38]. The vertical asymptotes in figures 9 and 10 correspond to 0 = 0 , ( 8  °) and 82=82.(8°), 
respectively. The extreme character of the function D(82) [or D(0)] with the slow increase at 

4 i 

II ,o=o. l  

31 ~ 0.25 

/ ~  e. (0.1) 0.4 
[ h i  , o .  (0.25) 

It" o. (0.4) 

0 

Figure 9. The normalized speed of  the concentration/density shock wave / )  = x/~dp°D/V, where V is the 
speed of  the shock wave in a pure gas at the same density jump vs 0 = pO/p~ behind the wave front; the 
• points correspond to the speed o f " sound"  in the two-phase dispersion in the steady state (0 = I, ~2 -- ~0); 

vertical asymptotes correspond to 0 , ( ~ ) .  
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Figure 10./~ as a function of the concentration of the dispersed phase behind the wave front; the • points 
are described in the caption to figure 9; vertical asymptotes correspond to E2.(c°). 

high 52 or 0, clearly seen at 5 ° = 0.1 in figure 10, does not have any physical interpretation. Indeed, 
the physical (not normalized) speed of  the shock D in [63] monotonically decreases with 0 (or 52) 
because of  the rapid decrease of  the speed of  the shock wave in the pure gas V with 0 (in spite 
of  the slow increase of  15 at high 0). 

Example 

We consider an air-water two-phase dispersion at normal conditions with the parameters 
e0 = 0.25 (5 ° = 0.75) in the steady state. We suppose an isothermal gas process within the bubbles, 
so that the speed of  sound in the pure gas Co = 330 m/s. From [38] we find the speed of "sound" 
in the two-phase dispersion Do = 33.6 m/s. We consider the concentration/density shock wave with 
the concentration of  the dispersed phase behind the front 52 = 0.18 (the concentration jump 
[~2] =52 - 5 0 =  -0 .07) .  From [50], [45] and [11] we find 0 =0.485 behind the shock, so that 
P2 = 2.666 kg/m 3 and the density jump [P2] = 1.373 kg/m 3. From [64], for the shock wave with the 
same density jump in a pure air at an isothermal process, we obtain V = 351 m/s. The value of  
/~ for the calculated value of  0 is found from [66] a s / )  = 3.235, so that the propagation speed of  
the shock D =40.83m/s .  So, for the given concentration jump [52] = - 0 . 0 7 ,  the type of 
thermodynamic process in the gas and the values of  the parameters of  the steady state (i.e. ahead 
of  the wave; in particular, 5 ° = 0.25), the propagation speed of  the shock is 8.08 times less than 
the speed of  the sound in the pure gas, 8.6 times less than the propagation speed of  the shock with 
the same density jump in the pure gas and 22% higher than the speed of  "sound" in the two-phase 
dispersion. 
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